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A new theory is developed for the wake far downstream of a cylindrical body 
of height h, placed with its generators perpendicular to the flow on a surface 
above which there is a boundary layer of thickness 8. If the streamwise (2) velo- 
city in the wakeis (U + u), then assuming (h/8) is small enough that the velocity 
proiile in the boundary layer may be regarded as U = ay, and assuming IuI << U ,  
linear differential equations governing u are derived. It is found that a constant 
along the wake is 

This result can be used to find an order of magnitude estimate €or u, because I is 
related to the forces on the body producing the wake by the approximate 

where C, is that component of the couple on the body produced by pressure 
and viscous stresses in the x direction. For the particular case of a small hump 
on the boundary of height h and length b, such that h b, the above relation is 
shown to be exact. The perturbation velocity in the wake is found to have a 
similarity solution 

the physical implications of which are discussed in detail. The relevance of the 
theory to the problem of transition behind a trip wire is also mentioned. 

I = yuuay. 

formula I = --Gl/P, 

21 = [~/(xv)lf(Y31[~v/~l), 

1. Introduction 
One of the most illuminating experiments in fluid dynamics is the demon- 

stration (due to Prandtl) of the effect of transition on separation by placing a 
trip wirein the boundarylayerof a sphere (Goldstein 1938, p. 72). Although there 
have been experiments to find out the details of how the wire creates the tran- 
sition, there have been no attempts to calculate the effect of the wire on the 
velocity profile in the boundary layer and thence on its stability. So this is one 
good reason for studying the laminar wake downstream of a two-dimensional 
body placed in a boundary layer. However, the main reason is that there are many 
practical problems for which an underestimating of these kind of wakes is im- 
portant. Although, in general, the wakes are turbulent, e.g. behind buildings in 
the atmospheric boundary layer, or roughness elements on aircraft wings, a 

t Also Department of Engineering. 
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fundamental understanding of the equivalent laminar flow problem is always 
necessary before embarking on a phenomenological analysis of a turbulent flow, 
this being our ultimate intention. 

Some aspects of the problem of a laminar wake in a boundary layer have been 
examined implicitly by Goldstein (1938), in that he analyzed the flow in a boun- 
dary layer when the distribution of velocity is given as a power series in y at a 
plane 2 = x,, say, However, this does not really help because essentially a wake 
far downstream of a body emanates from a delta function a t  the body, and such 
a delta function cannot easily be represented in terms of Goldstein’s power 
series. Thus Goldstein’s method has to be rejected. On the other hand, the prob- 
lem has been explicitly examined by Gertsenshtein (1966) who uses a Galerkin 
method to calculate the flow over a semi-circular cylinder placed in a boundary 
layer. However his linearized equations are not correct near the body, unless 
the body’s Reynolds number, R,, is very small. Since he calculates wake flows 
when R, is of order 10, his results must be regarded as suspect. 

The method adopted here is first to find the linear differential equations 
governing a perturbation on the boundary-layer flow near the surface y = 0 
($ 2). From these equations it follows that there is an integral, I ,  of the perturba- 
tion velocity, a, which is constant along the wake. In  8 3 we examine the relation 
between I and the forces on the body. In  Q 4 we look for a similarity solution to the 
equations of 92, anticipating that there must be a similar solution for these 
wakes far enough downstream. As a check on this solution we obtain in $ 5  a 
uniformly valid asymptotic solution for flow over a small hump of height h,, 
length b, such that h, < b. The analysis shows that, as x + co, the solution tends 
to the similarlity solution and also enables us to compare I with the calculated 
forces on the body. In  9 6 we discuss the conditions under which the analysis for 
an arbitrary body is valid and in $ 7  mention some preliminary conclusions about 
the stability of the perturbed flow in the wake. 

The first detailed experimental investigations into the flow behind boundary- 
layer trip wires were measurements of velocity profles behind wires of varying 
sizes by Liepmann & Fila (1947). These experiments were repeated and extended 
by Tani & Sat0 (1956), and recently by Hall (1968). Tani & Sat0 also measured 
the fluctuating velocities in the wakes as they became unstable, These experi- 
ments, and some interesting earlier ones of Fage (1943), were all concentrated 
directly on the transition problem. Their limitations in providing a check on the 
theory are mentioned in 6 7. 

2. Derivation of the governing equations 
We consider the flow far downstream of a two-dimensional body of height h 

situated at  the bottom of a boundarylayer, the thickness ofwhichis &(see figure 1). 
(The analysis also applies if the body is immersed in a Couette flow or a plane 
Poiseuille flow, but we shall not refer to these cases hereafter.) Thus our first 
assumption is that the body is sufficiently small, that 

h < 6. (2.1) 
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Our second assumption is to assume the truth of the hypothesis (H) that, if 
(2.1) is satisfied, far enough downstream the boundary-layer velocity profile 
reverts to its upstream form. We are not able to state sufficient conditions for 

A 

Boundary-layer 
thickness,S 

c_t_ Free stream - - - - - - - - -  

I / -  

I 
4 b 

Effective length of wake 

FIGURE 1. Flow over a two-dimensional body showing the wake and 
boundary-layer regions, and a typical streamline. 

the validity of this hypothesis, but we can say that the extensive velocity profile 
measurements of Hall (1968) do tend to support it  provided (2.1) is satisfied. 
One further assumption is that the Reynolds number of the wake, based on the 
velocity gradient at y = 0, a@), and the distance 1 in which the wake decays, is 
large, i.e. 

~ ~ 1 2 1 ~  = R $ 1, (2.2) 

where v is the kinematic viscosity. (We postpone discussion of the order of mag- 
nitude of Rh (=  ah2/v) until later.) 

With ut and p being the velocity and pressure in the wake, and (U(x ,  y ) ,  
V(x ,  y ) ,  0 )  and P being the velocity components and pressure of the undisturbed 
boundary-layer flow (or pipe flow), we now define the perturbation velocity 
component and perturbation pressure u, v and p as 

u1 = u+u, u2 = v +  v, 1, = P + @ .  (2.3) 

Since we assume the wake only occupies the bottom part of the boundary layer, 
we can express U as 

u = a(2) y / / q z )  y2+ ..., 

with the higher-order terms negligible in the region of interest. It follows that 
I1 F L M  49 
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the appropriate scaling for a perturbation on U is that used by Goldstein (1930) 

namely: X* = x/l, y" = Rhj/l, 

(2.5) 
U* = [e~lR-)]-l U ,  V* = [EXX~R-~]-' V ,  

where p is the density and R is defined by and satisfies (2.2). From our hypothesis 
(H), when x - I, 1.1 < U ,  and therefore, if we define u' to be O ( l ) ,  

€ <  1. (2.6) 
Since, by definition, U ,  V and P satisfy the Navier-Stokes equations, on sub- 

stituting the expressions of (2.3) and (2.4) into these equations we are only left 
with terms of O(e) and 0 ( c 2 ) .  If we ignore the latter, and also terms of O(R-3) com- 
pared with those of O ( l ) ,  we obtain the following equations: 

y*(l +(P/a)ZR-*y*+ ...) au*/ax+(1+2(P/a)IR-*y*+ ...) v* 

o = -ap*/ay*, (2.8) 

(2.9) au*lax* + av*/ay* = 0. 

The term on the right-hand side of (2.7) is essentially ZIL, where L is the distance 
in which the boundary flow changes. Before obtaining the solution for u*(x*, y*) 
it  is not possible to assess the size of this term, which it is plausible to assume is 
negligible if h < 6. However, we have to proceed heuristically and assume that 

l < L  (2.10) 

and therefore the right-hand side of (2.7) is zero. To justify this we show, apos- 
teriori, in $6  that, if (2.1) is well satisfied, then (2.10) must also be satisfied. 
The boundary conditions on (2.7) to (2.9) are that 

u* =v* = 0 at y * =  0 andas x*+co, (2.11) 

and, by the definition of a wake, u* -+ 0 as y* --f 00. 

formation from (2.7) alone. In addition the fact that 
The solution of (2.7) clearly depends on ap*/ax* about which we have no in- 

lorn u.* dy" 

is not constant along the wake (as shown later) means that as y* -+ 00, v* 4 vz(x),  
a function as yet unknown. Therefore to understand about p *  and the efflux or 
inflow v z  we must analyze the disturbed flow outside the wake, which we shall 
call the external flow and denote by a double asterisk. The relevant scaling length 
is now 1 in the x and y directions and the velocity scaling is chosen so that 

v** = v z  as y**+O. 

(2.12) I Then x** = 211, y** = y/l, 

u** = ( d R - $ ) - l U ,  

p** = (1/Ep) (011R-$)-~j5. 
v** = ( sa lR~-%)- l~ ,  
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Then to O(E)  the equations for u**, v** are 

y**(i + (pla) zy** + ...I au**/ax** + (1 + 2 ( ~ / 4  zy**) v** = - ap**jax**, (2.13) 

y**(i +(p/a)  zy**+ ...) av**/ax** = - ap**/ay**, (2.14) 

(2.15) 

where terms of O(R-l) and O[(Z/a) da/dx] have been ignored. This external flow, 
is, therefore, an inviscid perturbation on the boundary-layer flow. The boundary 
conditions for (2.13) to (2.15) follow from the fact that u, v must be continuous 
where the external flow meets the wake, and from the hypothesis (H): as 

au**px** + av**/ay** = 0, 

(2.16) 

these conditions being adequate to determine u**, v** everywhere. Note that 
u**(y** = 0) is not specified by matching with the inner flow because u* -+ 0 
as y* --f co. 

The particular scaling of (2.12) is only reasonable if the external flow extends 
in the y direction a distance small compared with 6, i.e. l < 6. This will only be 
true for very small protuberances. If 6 = O(t) ,  then the length scale becomes 6 
and the velocity scale U,, the free-stream velocity. In  that case the flow outside 
the boundary layer is affected. This procedure of dividing up the flow in the 
boundary layer into an inner viscous region, an intermediate inviscid region, 
and possibly another inviscid region outside the boundary layer has been used 
by Stewartson (1969) to examine the trailing edge of a flat plate. He calls this a 
‘triple deck structure’. In  the flows we consider here, two ‘decks ’ only are needed, 
namely those governed by (2.7) to (2.9) and (2.13) to  (2.15). 

Hereafter we concentrate on the simplest wakes where the boundary-layer 
profile U ( y )  is such that either p = 0, i.e. a boundary layer with no external 
pressure gradient (ap/ax = 0) ,  or where 

y** -+ 0, v** = V Z ( X ) ,  

(x**2+ y**2) -+ co, u**, v** --f 0, 

(P/a) 1 < 1. 

Then in (2.7), (2.13) and (2.14) U ( y )  becomes a simple shear flow, U = ay. 
Since p is continuous at  the boundary between the external flow region and the 
wake, (2.13) shows that 

ap*/ax* = (ap**/ax**) (y** + 0 )  = - v:. 

Thence the equations governing u*, v* in the viscous wake become 

y* au*lax* + V* - v,* = azu*/ay*2, 
au*lax* + av*/ay* = 0, 

with boundary conditions 

u* = v* = 0 at y* = 0, 

u*+O as y*-+co. 

(2.17) 

(2.18) 

(2.19) 

Equation (2.19) gives no indication as to the boundary conditions on u, v at any 
station of x ,  and consequently the size of u and v are not determined. This problem 

11-2 
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is resolved, with the technique Glauert (1956) used for a wall jet, by integrating 
(2.17) with respect toy*  from y* to m, and then again with respect to y* from 0 to 
00. We fmd 

Using (2.18), and integrating by parts, it follows that 

or, in dimensional variables, 
(2.20) 

where I is a constant. The physical significance of I is examined in the next 
section. 

3. The relation between the forces exerted on a body and the flow in 
its wake 

Consider Prandtl’s well-known result (Prandtl & Tietjens 1934) that the 
velocity in the wake behind a body in uniform flow is related to its drag, D ,  by 
the formula 

This suggests that there may be a relation between the constant, I, for the wake 
behind a body in a boundary layer and the forces on the body. We first note that 

is a quantity proportional to the deficit in angular momentum in the wake 
produced by velocities in the x direction. This suggests that 

I K  Q,, (3-2) 

C, being the contribution to the couple on the body produced by stresses in the 
x direction. 

Consider the following integral of the equation governing the x momentum 
of the fluid ss, y { - - + - + - - p  aP ax a7xy ay a7xx ax ( u,-+u 2 , 2 ) ) d X d Y = O  (3.3) 

over the area, A ,  that is outside the body and within the box shown in figure 2, 
the faces of which are at  x = X,, X,; y = 0, Y. X,, X ,  are assumed to be O(Z) and 
the line y = Y is assumed to be just outside the viscous wake, so that Y/l  < 1 
and YR*/l$ 1. 7xv and T,, are the viscous shear stresses given by 

au 
7,v = 7 (g+2) , 7,, = 27- ax * (3.4) 
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Now we use the suffixes + , - to denote the values o f p ,  rxy, rXx on the downstream 
and upstream faces at  a given value of h, y = h(x) being the profile o f  the body, 
where h < h, and 1x1 < b. We find that if the integral in (3.3) is re-arranged 

the lower suffix referring to the face o f  the box or the body on which the integral 
is applied. 

@ 
1 ------- r 

I 
01 

I 
lo 

XI x2 

FIGURE 2. Control surface for calculating the couple on the body at z= 0. The numbers 
refer to those faces of the surface for which the integrals in f 3 apply. 

In  deriving (3.6) we have assumed u1 = u2 = 0 on the body and the ground. 
Now, using (3.4) and the assumptions about the far wake of 0 2, it follows that the 
shear stress terms in (3.5) are negligible. In  order to express (3.5) solely in terms 
of the velocity on the sides of the box, we have to make an Oseen type of approxi- 

(3.7) mation that 

This approximation is likely to be valid for a streamline body with no separation. 
In  Q 5 we show that it is exact to  first order. But for a blunt body this approxima- 
tion is clearly invalid in the ‘bubble ’ behind the body. However, since the velo- 
city in the bubble is small, the contribution to (3.5) by this region may not be 
very important .-f 

u2 au,/ay N u2 auiay. 

Since ap/ay = 0 in the wake, and since on y = Y ,  from (2.13), 

appx = -pvau/ay, 
it follows that 

XZ 
j-0rY(P2-PI)/PdY = - l y q x l  U2&, 

= -PY%j-oF (u l l -u l~ )dy .  (3.8) 

t If  R, is large enough, Batchelor’s (1956) theory shows that the vorticity in the bubble 
is constant. In  that case the contribution by the bubble to (3.5) is exactly zero. 
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Since u(x = X,) is negligible compared with u(x = X z ) ,  being O(d2-Z) compared 
with O(eR-)), (3.5) gives 

where u is the perturbation velocity. Since zc -+ 0 as y -+ 00, we can let Y -+ 00 

and since (2.20) shows that the integral on the right of (3.9) is constant whatever 
the value of X,, (3.9) becomes 

c, N -PI, (3.10) 

where 

Now C, is the contribution to the total couple on the body caused by pressure 
and viscous forces acting in the x direction. In  tensor notation, if dXj is the 
vector normal to an element of area dS, and Sij is the Kronecker delta, 

X being the total area. Clearly the total couple 

c = c,+cz, 
where 

Only if the body is a plate normal to the flow is C, = 0. 
Note that our result (3.10) is only exact if (3.7) is exact, which is true in the 

rather degenerate example discussed in 5 5. How true it is in general can only be 
tested by numerical computation of the full non-linear equations. 

4. Solutions for the wake and external flow 
We now obtain the simplest and most plausible solution for the 'inner viscous 

wake' equations (2.17) and (2.18), subject to the boundary conditions (2.19) 
and (2.20). 

Differentiating (2.17) with respect to y*, we obtain 

y* a2u*lax* ay* = a3u*/ay*3. (4.1) 

Now assume that far downstream the wake appears to emanate from the line 
x = y = 0 and that the velocity profile is similar at all values of x. Then 

where I u* = X * k f ( T ) ,  

7 = y*3/x* = y3/(xv/a). 
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Then (4.1) becomes 

~*(~- ‘ ) (37 (  1 - k) f ’  + 37’f” + 6f’ + 547f” + 2772f”‘) = 0. 

k is found by using (2.20), whence 

= I*. 
Since I* is a constant, it  follows that 

k = - 1 ,  

and therefore (4.3) leads to the equation forf(7): 

167 

(4.3) 

(4-4) 

r”f”+ [-#+ 27lf” + 2(1+7)+f’ = 0. (4.5) 

The boundary conditions on f are 

and 

which are not sufficient to determine the solution to the third-order differential 
equation, (4.5). However, if we integrate (4.5) from 0 to 7, it follows that 

v2Y + cm,f’+ (3f = [72f” + Ck7”,f’+ ($)fl(,=OP 
Now r”f” and qy’ must both be zero as 7 -+ 0, if the pressure gradient and shear 
stress are not to be singular at  y = 0. Therefore we have reduced the equation to 
the second-order one 

(4.7) 
to which the solutionis 

(4.8) 

where G is a constant and Kg (AT) is a modified Bessel function. Using the result, 
quoted by Luke (1962), that 

f” +if + [2/(97’)]f = 0, 

f = G74 exp 1 - (Tlsr))Kg(i+r), 

or 

where 
(4.9) 

The general form of u can be seen from the asymptotic properties of u*. We find 
as 7 -f 0, 

(4.10) 
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or u* K y*/x*+, 

whereas when y -+ 00 

(4.11) 

These results agree with the values of u* computed from (4.19) which, expressed 
as u/(I/[vx]), are plotted against y/(xv/m)* in figure 3.  As a check on the computa- 
tions of K6, f(y) was plotted against y, and the area under the curve found to be 

within 2 yo of the exact value of f(y) dy calculated analytically. From figure 3 
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I -- '\ 
1.0 2.0 3.0 

Y l ( X V l 4 +  

FIGURE 3. Velocity profile in a laminar wake. -, exact solution (4.9); 
-_- , approximate solution (4.18). 

we see that the line on which the maximum velocity deficit in the wake is the cubic 
y3 = 1*52(zv/a), and a line approximately marking the edge of the wake is 
y3 = 3 ( x v / a ) .  Note that in (4.9), given I, u is independent of the value of 1. As 
with Prandtl's solution ours also is independent of R,. 

From (4.9) and the continuity equation u$ is found to be 

v z  = I*Ax*-Q, (4.12) 

where A = sd r($)/[gW(g)]. 



Wake of a two-dimensional body in a boundary layer 169 

From (4.12) we can now calculate the flow in the external flow. It follows from 
(2.13) and (2.14) that the vorticity of this flow is given by 

In  the particular case U - ay, since w** and u** far upstream are zero, 

av**jax** - au**/ay** = o (4.13) 

throughout the external flow region. The external flow is partly produced by the 
wake acting as a sink, and also by the doublet effect of the body itself. Since the 
latter flow decreases like r2 from the body, compared with r-8 for the former, we 
can ignore it. Putting u** = a$/ay** and w** = - a$/ax** from (4.13) it follows 
that 

az$/ax**z + az$lay**2 = 0. (4.14) 

The boundary conditions on $ are 

and 

(4.15a, b,c) 

a$/ax** = W, on y** = 0, x** > 0;  

a$lax** = o 
1Vld.l -+ 0 

y** = o,x** < 0;  

as ( x * * ~ +  Y * * ~ )  -+ CO. 

Clearly near x = 0 these conditions are not realistic, as the wake solution is invalid 
there also. The solution to (4.14) subject to (4.15) is very simple, being 

(4.16) 

where r = ( x * * ~  + Y**~)* and 8 = tan-l (ylx). The singular value of + near r = 0 
is a consequence of (4.12) not being valid near x = 0. A sketch showing these 
perturbation streamlines is shown in figure 4. This shows that the physical roles 
of the external flow region are to provide the flow sucked in by the viscous wake 
and to enable the pressure gradient to drop to zero from its value in the viscous 
wake. 

The most important point to note about the solution for this region is that it 
does not control the flow in the viscous wake, in this way being different from 
Stewartson's (1 969) ' middle deck ' which in his problem does influence the viscous 
'lower deck'. Therefore the form of U(y)  in this region does not matter, although 
our particular solution for the external flow, (4.16), is only valid if U(y) is such 
that /3 l<  a. For the solution of the viscous wake, (4.9), to be valid it is only neces- 
sary that there should be an uniform shear flow in the wake region, i.e. 

$lR-* < a. (4.17) 

As a final comment on the solution (4.9), it is interesting to compare this exact 
solution with an approximate solution .ii obtained by ignoring the term (w* - wz) 
in (2.17). Then, of course, the wake does not satisfy (4.1), but (2.17) can be solved 
directly. On integrating twice as before, we find 
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I* ('V)+ 
x* 3r(3 

and then, in terms of I*, u*=-  9 (4.18) 

I n  figure 3 we have plotted (.iix*/I*) against y/(xv/a)* to show that the maximum 
value of u is only about 13 yo higher than u*; also the shapes of the two curves 
are quite similar, although, as one might anticipate, the effect of omitting the 
(w* - vz) term is to reduce the thickness of the wake. 

FIGURE 4. Perturbation streamlines of the external flow produced by the wake. 

5. Complete solution for flow over a small hump? 
Now consider the flow over a small hump of length 2b with the profile 

y = bh*(x*), where x* = x/b 

Consequently we assume that flow over the hump does not separate and is a small 
perturbation on the boundary-layer flow, everywhere (see figure 5). We also 
assume that bh*/6 is sufficiently small that  in the viscous wake and external 
flow regions U(y) is given adequately by 

and where h* < 1. (5.1) 

u = ay. (5.2) 
To analyze the whole flow we assume R, = ab2/v % 1 and we consider two regions 

as before. In the inner region we use a co-ordinate system curved round the 
hump : 

(5.3) 1 
X+ = x/b, 

u1 = a[y - bh* + ~bR&(a$*/@/*),*], 
ug = ~ [ ( y  - bh*) h"' - EbR&a$*/aX*)p + ebR-*h*'a$*/ay*], 

p = P+pe(abR,))2p*, 

y* = [y/b - h * ( ~ * ) ]  Ri, 

t I am indebted to Professor Stewartson for the idea of performing this analysis to check 
the previous results. 
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where $* and p* are non-dimensional functions of x* and y*. Then to O(s),  and 
ignoring terms O(R;%), the equations of motion become 

y*a2@*lax*ay* - a$*lax* = - ap*/aX* + a3$*/ay*3, (5.4) 

(&)-ly*2h*ff = - ap*/ay*. (5 .5 )  

External (inviscid) region 

+/ - - -  I 
y = b  h*(x) ,&+kl,,;J;;;; .x 

4 
2b 

FIGURE 5 .  Flow over a small hump. 

In  the external inviscid region we use the same co-ordinate system as in $2, 

y"* = y/b, 
namely 

(5.6) i 
x** = x / b ,  

= U(Y + d&g% ag**jay**) 

u2 = - d R ; *  a@**jax**, 

p = P+ps(aZ)2p**, 

and then the governing equations, for the reasons mentioned in $4, become 

az@**/ax**2 + a2p*/ay**2 = 0. 

The boundary conditions follows from the no slip condition, our hypothesis 
(H) and continuity of velocity at the boundary between the two regions. We 
find for the inner region 

$* = ag*/ay* = 0. I y* = 0 

x*+00 

i y* -+ 00 a2$*lay*2+ 0, a$*lay* ( IZ ,* /S )R~ ,  

and @* (h*/dRBy*+@%); 

and for the outer region 

1 y** -+ 0, $** = $ Z ( X ) ,  

(y**2+x**2) -+ 00, IV$**l -+ 0. 

(5.7) 

Here qkt(x) is an unknown function to be found. It follows from (5.7) that 
E = O[h*Ri], and thence that if E Q 1, 

h* < R;*. (5.9) 
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Physically this implies that the hump is buried inside the viscous region it 
creates, as shown in figure 5. 

To solve (5.4), (5.5) subject to (5.7), first take the curl and then take the Fourier 
transform (F.T.) of $*. We obtain 

a4$/ay*4- iky* a2+/ay*2 = 0, (5.10) 

where 

Putting 

- 
$(k, y*) = OD $*(x*, y*) e--ikx* dx*. 

-OD 

X ( Z )  = a2$/ay*2, 

where z = y*k)e-*in, (5.10) becomes 
- 

a2XIaz2 - zx = 0. 

The boundary Conditions on X follow from (5.7) : 

and 

(5.11) 

y+co, X - t o ,  (5.12) 

= 0, aX/az = -k%jE&), (5.13) 

(5.14) 

where F, and $,,, are the F.T. of h*(x*) and $z(x*). The solution to (5.11) can be 
found in terms of Airy functions, the conditions (5.12) and (5.14) defining the 
solution as: x = GE(k) Ai (zegni) (5.15) 

where G = (Rile) 3e*kin1k1* for k: 5 0. 

$(k) = 3(L/e) Rblkl-)eF*inAi' (0). 
Then, from (5.13) - 

(5.16) 

It is not our intention here to provide a complete description of the flow over 
the hump, but rather to show that the exact solution (5.15) is equivalent to the 
similarity solution (4.9) as x* -+ 00, and that the relation (3.10) in this case is 
exact, i.e. the constant in the similarity solution exactly satisfies 

f = -C,/P, 

where C, is the component of the couple on the hump defined by (3.6). The analysis 
is lengthy but straightforward. Let 

X ( k ,  Y*) = X,@, Y*) W), (5.17) 

> 1, by the convolution theorem it follows that as 

X N X & * , Y * ) / ~  h*(C)dC. (5.18) 

To find all.*/ay* as x* -+ 00 it is more convenient to find the inverse transform of 
Y(k ,  y*) where 

Y(x* ,y*)  = IX:Xdx*. 

then, since h(x*) = 0 for 
X* --z 0, 

-1 

- 
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Using (5.14) and (5.17) it it shown in the appendix that 
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Y(x*,y*) N - (5.19) 
(2n8/3*) (xs)* 

where 

Defining the perturbation velocity u as in $2, it follows from (5.3) that 

g = y*3/x* = y"[xv/a]. 

u = cab R; f a$*/ay*, (5.20) 

whence (5.19) gives the same expression for u as (4.9), where the constant 

1 

I = - vabZ/ -1 h*(c) dg. (5.21) 

As regards the external flow region, it is a simple matter to deduce from (5.15) 
that as x* -+ m 

in agreement with (4.12). 
To calculate the component of the couple, C,, exerted on the hump by the 

flow, we first consider the pressure on the body. Since ap*/ay* = 0 in the viscous 
region near the body, we only have to find ap*/ax*, which is of order a$*/ax* as 
y* + co. Therefore from (5.7) and (5.15) we find 

ap*/ax* = O[hR*/c], 

- a$*px* = V: = I*A~*-+, 

and thence the contribution to C, from pressure forces, namely 

lOhoy(p--p+) dy = O[pa2b4h*3R;)]. 

On the other hand, the main contribution from the shear stress term is 

But in (5.9) we have assumed that h* < R;)  and therefore the couple produced 
by the pressure term is negligible compared to that by the shear stress. Thence 

1 

-1 
C(, = p v l z a s  h*(c)dc.  

Thus, from (5.21), C, = - I / p ,  Q.E.D. (5.22) 

Note that for this hump C, = O(pa2b4R;4h*), so that the major contribution to 
the couple C comes from C2 rather than C,. Therefore our result (5.22) is only 
significant in its demonstration that (3.10) is exact in at least one case. 
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6. On the assumption of the analysis 

(4.9) for the viscous wake were the following: 
The detailed assumptions which were needed to obtain the similarity solution 

hl8 < 1, (6.1) 
R = d 2 / V  9 1, (6.2) 

and when x - I ,  E e l .  (6.3) 

Given (6.1) we assumed that the following were also true 

and 

h = 1/L < 1, 

p = (P/a) ZR-* < 1. 

First consider the implications of the assumptions (6.2) and (6.3). If U, is the 
free-stream velocity and L the distance in which the boundary layer changes, 

a (Ul/L) R ~ ,  

where RL = U,L/v, so that (6.2) implies 

Thus (6.6) and (6.4) provide bounds on ZIL. In considering (6.3) we have to fix 
R, = ahZ/v, the Reynolds number of the body, and let us assume for convenience 
that R, N 1 or greater. (We shall use N hereafter to denote ‘is of the order of 
magnitude of’ in a ‘factor of ten’ sense.) Then if the body is bluff, C, N pa2h4 
and assuming that (3.10) gives the right order of magnitude for 1 in terms of C,, 
from (4.9) it follows that in the wake, if 

€z = -u/u, 
B, = - u/a(xv/a)f N Rt(x/h)-*. (6.7) 

Thus we can now make the inequality (6.3) more precise. For if c is the largest 
value of E ,  that is tolerable for accuracy of the solution, (say 0-l) ,  

E/h - (x /h)  2 €-gR,. (6.8) 

Since E < 1, it follows that (6.8) is consistent with (6.2). For the rather different 
problem of the small hump, the similarity solution is valid when 

x/b 9 1, 

if R, N 1 or greater. Thus for a blunt body the similarity solution is only valid 
a large number O(R,) body heights downstream, but for a small hump it is valid 
a few body lengths downstream. 

Condition (6.4) is a simple physical way of expressing the condition that in the 
wake 

Since (da/dx) /a  is constant along the wake but u*/(au*/ax) increases as x*, 
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(6.9) cannot be true sufficiently far downstream. Therefore we assume that 
A, < h < 1, h being the highest value that is tolerable for the accuracy of the 
solution, (say, 0.1). Now for a laminar boundary layer L - SR, where R, = aP/v,  
and therefore, for whatever type of body, to satisfy (6.4) 

x/h 5 h(S/h)3 R,. (6.10) 

Thus given (h/S), (6.10) gives the upper limit on (z/h) for the validity of the solu- 
tion. Taking (6.10) and (6.8) together we obtain the following imprecise but 
necessary conditions on (h/S) for a blunt body: 

(h/S) < €4, (h/S) < A). (6.11) 

From (6.1 l ) ,  (6.8), and (6.6) we can obtain useful criteria for R,, RL and E ,  namely 

€ 4 ~ ~  > R, > &RL, (6.12) 

where R, is assumed to be O(1) or greater. Provided (6.10) is satisfied there is a 
range of (x/h) such that the criteria (6.3) and (6.4) are satisfied. 

To satisfy the criterion (6.5) we must take I to be the largest value of z con- 
sistent with (6.9). Therefore 

P (PW)h+. 

Since PS/a - 1, and, by definition h < 1, (6.5) is satisfied. (If we consider higher- 
order terms in the expansion of U(y) ,  condition (6.9) still ensures (6.5) is valid.) 

Thus we conclude that, if to the original assumptions (6.1) to (6.3) are added 
(for a blunt body) the assumptions in (6.10), then the similarity solution (4.9) is 
valid and the special assumptions (6.4) and (6.5) are unnecessary. In  deriving 
(6.10) we have assumed R, - 1 or greater. This assumption is not necessary be- 
cause, as we have already stated, the solution (4.9) is independent of R,. How- 
ever, if R, < l ,  then new criteria for (6.7) and (6.10) must be found, which is a 
simple matter to do. 

7. Conclusions 
In  this paper we have first of all shown that the wake far downstream of a 

body placed at  the bottom of a boundary layer has properties which are quite 
different from those of a wake in a uniform flow. The form of the profile of the 
perturbation velocity, u, in the wake shown in figure 3 is different in the way one 
might expect, because u = 0 a t  y = 0. A more important difference between the 
velocity in these wakes and in those behind bodies in a uniform flow is that here 
the perturbation velocity decreases with the distance downstream in proportion 
to 2-1 as opposed to x* in the latter case, i.e. much faster. The other difference 
concerns the second-order flow outside the wake, Since in this case the flux of u*, 

Iomu*dy* ,  is not constant along the wake, the wake acts as a sink along its 

length, as opposed to providing a sink at infinity (Prandtl & Tietjens 1934, $80). 
In both cases there is a line source at  the body, although in our case the source 
strength is singular. The external flow produced by this line sink is quite different, 
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for example the velocity decays as r-8 with distance r from the body, as opposed 
to r-l in the other case. The last difference is that these kinds of wakes create a 
pressure gradient a@/ax caused by the shear of the boundary layer and the sink 
flow. An important role of the external flow region is to reduce this pressure grad- 
ient to zero as y** -+ 00. 

The second point we have made is that the velocity in the wake is related to the 
couple on the body. There is little purpose in calculating the velocity in the wake 
if we cannot relate it to the size of the body and the forces on it. For a body in a 
uniform flow there is an exact relation between an integral of u which is constant 
along the wake, in this case the momentum dejicit, and the drag on the body. 
So accurate is it that the drag can be calculated from measurements in the wake. 
However in our case the constant integral of u in the wake, 

is only approximately related to a component of the couple on the body C,, 
defined by (3.6). This is not very satisfactory but it does mean that u can at least 
be estimated to an order of magnitude, which without this relationship would not 
be possible. Clearly this is a problem worthy of further study. 

We began by mentioning the problem of transition. It would now be interest- 
ing to see whether a stability analysis of the velocity profiles in the wake would 
predict, even approximately, the correct Reynolds number of transition. It is 
immediately clear from the Orr-Sommerfeld equation that, since a uniform shear 
flow is stable, small disturbances can only grow if 

ez = -u(x,y)/ay > 0. 

Since we have shown in (6.6) that 

ex N RW(x/h)-*, 

ex decreases as x increases. However, the Reynolds number of the wake a t  the 
section where these disturbances grow, R,, must be greater than some critical 
number Rcrit(ex), found from the Om-Sommerfeld equation. Since 

R, = a(xv/a)f/a N x*(cx/v)#, 

R, increases as x increases. Therefore the position at which the disturbances 
iirst grow lies a t  some large but finite value of (x/h) along the wake, as observed 
for various types of body by Fage (1943). Further qualitative results can be 
deduced assuming a plausible form for Rcrlt(ex), but these will be more convincing 
when the stability analysis is completed. 

Unfortunately the experimental results which might quantitatively be com- 
pared with the theory are not in a suitable form, and the experimental measure- 
ments made are not detailed enough. First, Liepmann & Fila (1947) disclaimed 
any quantitative accuracy, and then Tani & Sato’s (1956) and Hall’s (1968) 
results cannot be used because of their small-scale graphs and the small number 
of velocity profiles. However, the experiments confirm our main hypothesis 
(H) that the flow reverts to its upstream value if the body is small enough. 
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Also Tani & Sato's results confirm the general form of the velocity profile 
in the wake downstream of the bubble. In  one case the wake extends over a dis- 
tance 70 < x/h < 200, where R, 21 150 and h/6 = 0-15. According to our theory, 
with 6 = h = 0.1 and inserting appropriate constants into the order of magnitude 
expressions(6.7)and(6.lO)thecriteria(6.8) and (6.10)implythat40 < x/h < 400, 
and the criterion (6.11) implies that h/6 < 0.46. Thus experimental parameters 
can fall within the range where the theory is applicable. Clearly more experiments 
are needed in which detailed comparisons with the theory are possible. 

This work was begun at the Central Electricity Research Laboratories at 
Leatherhead, and I am grateful for the advice of R. A. Scriven and J. Armitt. 
The particular form of the solution in $ 4  is due to Scriven, being more elegant 
than my clumsy version. I am also indebted to Dr H. K. Moffatt and the referees. 

Appendix 
From (5.15) and(5.17) 

we find 

where h = +(y*)s. Thence using the convolution theorem 

where 

From the transforms of ErdBlyi, Magnus & Oberhettinger (1954, pp. 10,68,55), 
we find 

f(x*) = sin (gn) (x*)-~ 

Substituting the results of (A4) into (A3), and making the transformation 

I/[ = (I/x*) + t ,  
12 F L M  49 
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Then using the Laplace transform quoted by Erd6lyi et al. (1954, p. 137) 

the result which is quoted in (5.18). 
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